1.1 Spektrofotometri
Spektrofotometer adalah alat untuk mengukur transmitan atau absorban suatu sampel sebagai fungsi panjang gelombang, metode ini sering disebut spektrofotometri. Teknik analisis spektrometri merupakan cara analisis yang paling penting dan paling khas penggunaannya. Semua teknik spektrometri berdasarkan atas emisi atau adsorbsi radiasi elektromagnetik yang merupakan sifat khas dari perubahan energi dalam suatu molekul atau atom tertentu. Perubahan energi ini berupa tingkatan energi terkuantisasi yang mencirikan jenis-jenis atom atau molekul, karena setiap atom atau molekul memiliki perbedaan satu dengan yang lainnya.
Spektrofotometri dapat dianggap sebagai perluasan suatu pemeriksaan visual dengan studi yang lebih mendalam dari absorbsi radiasi. Absobrsi radiasi oleh suatu sampel diukur pada berbagai panjang gelombang dan dialirkan ke suatu perekam yuntuk menghasilkan spektrum yang khas untuk komponen yang berbeda.
Analisis kimia dengan metode spektrofotometri didasarkan pada interaksi sinar (radiasi elektromagnetik) dengan materi. Interaksi meliputi proses adsobrsi, emisi, refleksi, dan transmisi oleh atom-atom atau molekul dalam suatu materi. Spektrofotometri merupakan suatu teknik analisis kimia untuk analisis kualitatif dan kuantitatif.
1.2 Radiasi Elektromagnetik
Suatu berkas radiasi merupakan gelombang elektromagnetik atau foton yang bergerak dengan kecepatan cahaya. Foton mempunyai sifat partikel dengan energi tertentu dan pada saat yang sama juga mempunyai sifat gelombang.
Gelombang pada dasarnya hanyalah suatu cara perpindahan energi satu tempat ke tempat lainnya, energi pada sinar berjalan melalui pergerakan lokal yang relarif kecil pada lingkungan sekitarnya. Pada gelombang terdapat puncak dan lembah, Jarak antara dua puncak dari gelombang dinamakan panjang gelombang. Jika banyaknya puncak dihitung setiap detiknya maka akan didapat frekuensi, frekuensi diukur dengan satuan putaran per detik disebut hertz. Misalnya sinar jingga mempunyai frekuensi 5 x 1014 Hz maka artinya sinar tersebut terdapat 5 x 10 14 puncak gelombang yang lewat tiap detiknya.
Terdapat hubungan yang sederhana antara panjang gelombang dan frekuensi dengan kecepatan sinar dari suatu warna.
c = λ . v
c : kecepatan sinar (3 x 108 m/detik)
λ : panjang gelombang
v : frekuensi
Kita dapat mengolahnya untuk mendapatkan panjang gelombang jika diketahui frekuensinya dan sebaliknya. Jika frekuensi dinaikkan maka panjang gelombang akan berkurang dan juka panjang gelombang lebih panjang maka frekuensinya juga lebih rendah. Jadi dapat disimpulkan, semakin pendek anjang gelombang maka frekuensinya lebih tinggi.
Selain dari pada itu frekuensi sinar mempunyai hubungan yang khas pula dengan energi, berikut persamaan sederhanaya :
E = h. v
E : Energi
H : ketetapan plank ( 6,626 x 10-27 erg/detik)
V : frekuensi
Dari persamaan diatas dapat dilihat jika frekuensi tinggi, maka energi sinar akan lebih tinggi.
1.3 Cahaya dan Sifat-sifatnya
Cahaya atau sinar adalah suatu bentuk energi dan merupakan radiasi elektromagnetik. Cahaya memiliki panjang gelombang, frekuensi , dan kecepatan. Pada tabel dibawah merupakan warna cahaya berdasarkan panjang gelombang.
No. Panjang gelombang (nm) warna Warna komplementer
1 <380 Ultra violet
2 380 – 435 Violet Hijau kekuningan
3 435 – 480 Biru Kuning
4 480 – 490 Biru kehijauan Jingga
5 490 – 500 Hijau kebiruan Merah
6 500 – 560 Hijau Ungu kemerahan
7 560 – 580 Hijau kekuningan Violet
8 580 – 595 Kuning Biru
9 595 – 650 Jingga Biru kehijauan
10 650 - 780 Merah Hijau kebiruan
11 >780 Inframerah dekat
Jangan membayangkan ada bataas yang jelas antara semua warna tersebut, pada kenyataannya warna saling bercampur satu sama lain, lebih rumit dari tabel diatas. Pada spektrum yang lebih lengkap, akan ditunjukkan ultra unggu dan infra merah, tetapi dapat diperbesar lagi hingga sinar-X dan gelombang radio (diatas infra merah), diantara sinar yang lain. Penjelasan tentang sinar dijelaskan sebagai berikut :
1.3.1 Sinar-X (x-ray)
Sinar-X panjang gelombangnya terdapat dibawah ultra violet, sinar ini cukup untuk mempengaruhi elektron dalam. Sinar-X memiliki panjang gelombang yang pendek, tetapi berenergi tinggi.
1.3.2 Sinar Ultra Ungu (ultra ungu)
Sinar UV trdapat pada panjang gelombang < 380 nm diatas sinar-X , sinar UV cukup untuk mempengaruhi elektron valensi. Sinar UV diproduksi oleh lampu khusus yang mengandung uap merkuri atau gas deuterium. Sinar UV berenergi tinggi, suatu senyawa bisa menyerap sinar UV apabila dalam senyawa tersebut terdapat gugus fungsi yang disebut senyawa kromofor. Kromofor memiliki ikatan tak jenuh atau mengandung gugus fungsi dengan ikatan rangkap.
1.3.3 Sinar Tampak (visible)
Sinar tampak dapat dilihat oleh mata secara langsung, karena terdapat pada panjang gelombang 380-780 nm, yang cukup mempengaruhi elektron valesi. Sinar tampak diproduksi oleh lampu biasa ( mis. Wolfram), sinar ini terdiri dari beberapa cahaya yang disebut cahaya polikromatis.
1.3.4 Sinar Infra Merah (infra red)
Sinar infra merah terdapa pada panjang gelombang > 780, energi radiasi IR cukup untuk mempengaruhi vibrasi dan rotasi molekul. Sinar IR dihasilkan dari benda panas semacam kawat logam dalam bola lampu, sinar IR tidak terlihat oleh amta tetapi dapat dirasakan hangat pada kulit kita.
1.4 Interaksi Cahya dengan Materi
Analisis kimia dengan metode spektrofotometri didasarkan pada interaksi sinar (radiasi elektromagnetik) dengan materi. Interaksi meliputi proses adsobrsi, emisi, refleksi, dan transmisi oleh atom-atom atau molekul dalam suatu materi. Selain dari itu ada yang disebut hamburan cahaya dan rotasi cahaya yang terpolarisasi.
1.4.1 Absorpsi Cahaya
Zat kimia dapat mengadsorpsi cahaya melalui berbagai cara, bila zat mikia mengadsorpsi cahaya, maka energi cahaya diubah menjadi bentuk energi lain.
1.4.2 Emisi Cahaya
Jika elektron pada keadaan tereksitasi kembali ke tingkat energi yang lebih rendah, maka energi akan diemisiskan dalam bentuk cahaya. Cahaya yang diemisikan memiliki panjang gelombang tertentu sesuai dengan perbedaan tingkat energi yang terlibat dalam proses emisi, Karena memiliki panjang gelombang tertentu maka cahaya yang diemisikan akan memiliki warna tertentu.
1.4.3 Hamburan Cahaya
Partikel-partikel besar dalam suatu campuran dapat menghamburkan cahaya ke segala arah, oleh karena itu intensitas cahaya asal akan berkurang. Pengukuran hamburan cahaya dapat digunakan untuk menentukan konsentrasi suatu suspensi padatan sesuai ukuran partikelnya.
1.4.4 Refleksi Cahaya
Refleksi cahaya atau pemantulan cahaya adalah perubahan arah rambat cahaya ke arah sisi (medium) asalnya, setelah menumbuk antar ,muka dua medium.
1.3.5 Rotasi Cahaya Yang Terpolarisasi
Bila seberkas sinar melalui filter terpolarisasi khusus maka cahaya yang masuk dengan memiliki komponen listrik akan berosilasi pada satu arah yang dinamakan bidang terpolarisasi. Komponen listrik dari cahaya normal dapat berosilasi ke segala arah sudut tertentu terhadap arah gerak sinar.
Senyawa kimia bersifat optis aktif yaitu dapat memutar bidang cahaya terpolarisasi, jumlah putaran berkas cahaya tersebut dapat digunakan untuk menentukan konsentrasi senyaaw kimia yang optis aktif dalam suatu sampel.Pada umumnya senyawa optis aktif mengandung gugus karbon yang asimetris (C asimetris), yaitu atom karbon yang mengikat empat jenis atom atau gugus yang berbeda-beda.
Tidak ada komentar:
Posting Komentar